Crystal structures of 1-aminocyclopropane-1-carboxylate (ACC) synthase in complex with aminoethoxyvinylglycine and pyridoxal-5'-phosphate provide new insight into catalytic mechanisms.

نویسندگان

  • Q Huai
  • Y Xia
  • Y Chen
  • B Callahan
  • N Li
  • H Ke
چکیده

The structures of tomato 1-aminocyclopropane-1-carboxylate synthase (ACS) in complex with either cofactor pyridoxal-5'-phosphate (PLP) or both PLP and inhibitor aminoethoxyvinylglycine have been determined by x-ray crystallography. The structures showed good conservation of the catalytic residues, suggesting a similar catalytic mechanism for ACS and other PLP-dependent enzymes. However, the proximity of Tyr152 to the C-gamma-S bond of model substrate S-adenosylmethionine implies its critical role in the catalysis. The concerted accomplishment of catalysis by cofactor PLP and a protein residue, as proposed on the basis of the ACS structures in this paper, may represent a general scheme for the diversity of PLP-dependent catalyses. PLP-dependent enzymes have been categorized into four types of folds. A structural comparison revealed that a core fragment of ACS in fold type I is superimposable over tryptophan synthase beta subunit in fold type II and mouse ornithine decarboxylase in fold type III, thus suggesting a divergent evolution of PLP-dependent enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of 1-Aminocyclopropane-1-Carboxylate Synthase by l-Vinylglycine as Related to the Mechanism-Based Inactivation of the Enzyme by S-Adenosyl-l-Methionine.

The pyridoxal phosphate-dependent 1-aminocyclopropane-1-carboxylate (ACC) synthase catalyzes the conversion of S-adenosyl-l-methionine (AdoMet) to ACC, and is inactivated by AdoMet during the reaction. l-Vinylglycine was found to be a competitive inhibitor of the enzyme, and to cause a time-dependent inactivation of the enzyme. The inactivation required the presence of pyridoxal phosphate and f...

متن کامل

Inactivation of stress induced 1-aminocyclopropane carboxylate synthase in vivo differs from substrate-dependent inactivation in vitro.

The activity of 1-aminocyclopropane carboxylate (ACC) synthase increased rapidly in tomato (Lycopersicon esculentum Mill.) leaf discs after vacuum infiltration, reached a maximum after about 30 minutes, and subsequently decayed with an apparent half-life of about 20 minutes. Aminoethoxyvinylglycine, a known inhibitor of ACC synthase, did not alter the apparent turnover of ACC synthase in vivo a...

متن کامل

The multiple roles of conserved arginine 286 of 1-aminocyclopropane-1-carboxylate synthase. Coenzyme binding, substrate binding, and beyond.

A pyridoxal 5'-phosphate (PLP)-dependent enzyme, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (S-adenosyl-L-Met methylthioadenosine-lyase, EC 4.4.1.14), catalyzes the conversion of S-adenosyl-L-methionine (AdoMet) to ACC. A tomato ACC synthase isozyme (LE-ACS2) with a deletion of 46 amino acids at the C terminus was chosen as the control enzyme for the study of the function of R286 in A...

متن کامل

Expression of apple 1-aminocyclopropane-1-carboxylate synthase in Escherichia coli: kinetic characterization of wild-type and active-site mutant forms.

The pyridoxal phosphate-dependent enzyme 1-aminocyclopropane-1-carboxylate synthase (ACC synthase; S-adenosyl-L-methionine methylthioadenosine-lyase, EC 4.4.1.14) catalyzes the conversion of S-adenosylmethionine (AdoMet) to ACC and 5'-methylthioadenosine, the committed step in ethylene biosynthesis in plants. Apple ACC synthase was overexpressed in Escherichia coli (3 mg/liter) and purified to ...

متن کامل

Nucleotide sequence of a cDNA clone encoding 1-aminocyclopropane-1-carboxylate synthase in mustard (Brassica juncea [L.] Czern & Coss).

Ethylene, a gaseous plant hormone, is involved in regulation of various physiological responses during plant growth and development. These include seed germination, abscission, fruit ripening, and plant senescence (Yang and Hoffman, 1984). Plants also produce high levels of ethylene when they are under environmental stresses or pathogen attacks. In ethylene biosynthesis, the precursor Met is co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 41  شماره 

صفحات  -

تاریخ انتشار 2001